Electronic and Optical Properties of Size-Controlled ZnO Nanoparticles Synthesized by a Facile Chemical Approach

Authors

  • Shikha Jindal Department of Applied Physics, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, INDIA
  • Sushama Milind Giripunje Department of Applied Physics, Visvesvaraya National Institute of Technology, Nagpur, Maharashtra, INDIA
Abstract:

Facile low-temperature chemical route for the synthesis of ZnO nanoparticles is reported in this paper. Morphologically uniform and spherical shape with an average particle size of 8.8 nm and wurtzite phase with the crystalline structure of as-synthesized ZnO nanoparticles were confirmed by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM). The optical properties of ZnO nanoparticles were analyzed by UltraViolet Visible (UV-Vis) absorption and PhotoLuminescence (PL). The as-synthesized ZnO nanoparticles showed orange light-emitting properties when excited at 400 nm due to the well overlapping of electron and hole wave function across the compatible size of the particle of ZnO and the optical energy band gap of 3.5 eV due to quantum confinement. X-ray Photoelectron Spectroscopy (XPS) and Ultraviolet Photoelectron Spectroscopy (UPS) were used for the elemental, molecular and energetic information of ZnO nanoparticles. UPS analysis depicted the energy level position of ZnO nanoparticles whereas XPS spectra showed the presence of constitute elementals with the stoichiometric atomic % of Zn and O. The elemental composition was also confirmed by the EDS analysis. The significant Raman shifts for as-synthesized ZnO nanoparticles in the typical Raman-active modes of vibration assigned to the wurtzite crystal nanostructure of ZnO. 

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

control of the optical properties of nanoparticles by laser fields

در این پایان نامه، درهمتنیدگی بین یک سیستم نقطه کوانتومی دوگانه(مولکول نقطه کوانتومی) و میدان مورد مطالعه قرار گرفته است. از آنتروپی ون نیومن به عنوان ابزاری برای بررسی درهمتنیدگی بین اتم و میدان استفاده شده و تاثیر پارامترهای مختلف، نظیر تونل زنی(که توسط تغییر ولتاژ ایجاد می شود)، شدت میدان و نسبت دو گسیل خودبخودی بر رفتار درجه درهمتنیدگی سیستم بررسی شده اشت.با تغییر هر یک از این پارامترها، در...

15 صفحه اول

Size-Controlled and Optical Properties of Monodispersed Silver Nanoparticles Synthesized by the Radiolytic Reduction Method

Size-controlled and monodispersed silver nanoparticles were synthesized from an aqueous solution containing silver nitrate as a metal precursor, polyvinyl alcohol as a capping agent, isopropyl alcohol as hydrogen and hydroxyl radical scavengers, and deionized water as a solvent with a simple radiolytic method. The average particle size decreased with an increase in dose due to the domination of...

full text

Optical, Thermal and Structural Properties of CdS Quantum Dots Synthesized by A Simple Chemical Route

The present work deals with the synthesis and characterization of CdS nanoparticles with good thermal stability and optical properties by a novel and simple synthetic route. The nanoparticles were synthesized via chemical precipitation method in a single reaction vessel under ambient conditions. The prepared CdS nanoparticles were compared with the bulk CdS. The Optical properties were determin...

full text

Optical and photocatalytic properties Undoped and Mn-doped ZnO nanoparticles synthesized by hydrothermal method: Effect of annealing temperature

Undoped and Mn-doped ZnO nanoparticles were successfully prepared by the hydrothermal method with different annealing temperature conditions. Structural, chemical and optical properties of the samples were studied by X-ray diffraction (XRD), Field Emission scanning electron microscopy (FESEM), UV-Vis spectrophotometry and Fourier transform infrared (FT-IR) spectroscopy. The phase purity was con...

full text

Optical and photocatalytic properties Undoped and Mn-doped ZnO nanoparticles synthesized by hydrothermal method: Effect of annealing temperature

Undoped and Mn-doped ZnO nanoparticles were successfully prepared by the hydrothermal method with different annealing temperature conditions. Structural, chemical and optical properties of the samples were studied by X-ray diffraction (XRD), Field Emission scanning electron microscopy (FESEM), UV-Vis spectrophotometry and Fourier transform infrared (FT-IR) spectroscopy. The phase purity was con...

full text

Chemical Synthesis and Optical Properties of ZnO Nanoparticles

We report here a simple wet chemical process to synthesize ZnO nanoparticles. The morphology of the nanoparticles was observed in field emission scanning electron microscope. The nanoparticles have average diameter ~ 100 nm. The optical property of the synthesized ZnO nanoparticles was investigated using UVvisible absorption spectra. The synthesized nanoparticles exhibit strong absorption at ~ ...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 38  issue 5

pages  11- 20

publication date 2019-10-01

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023